

Micro, Drip and Sprinkler Application Technology

Basic Knowledge

Li Ming 2018/10/15

Shanghai Engineering Research Center of Efficiency Irrigation (SERCEI)/Shanghai Irrist Corp., ltd.

Pipeline Network

On Field Pipeline Network --- A general term for pipes, fittings and valves at all levels that take water from the source and transport and distribute it step by step into the field.

High Efficient Irrigation and Fertilization Model

控制阀

Water transport: main pipe, submain and manifold pipe -- pipe upstream of irrigation valve.

Water distribution: lateral pipe and dripline downstream of irrigation valve.

控制阀 A-33

> 控制阀 A-34

Accessories: fittings, valves, (flow, pressure) regulators, safety facilities, water meter etc.

控相间 A-31

> 控制阀 A---32

The proportion of the cost for each part of irrigation system

Pipes for agricultural irrigation

Micro irrigation

Cost less Harvest može

Pipes to be used

Cement pipe

Metal pipes: steel pipes, cast iron pipes, copper pipes, aluminum alloy pipes, etc.

The above pipe irrigation system is rarely used, commonly used is plastic pipes.

Pipes to be used

- In China, the main pipes used in agricultural irrigation are PE pipe (HDPE, LDPE), PVC-U for water transport pipe.
- Steel pipes and PPR pipes will also be used under special circumstances.

PVC-U Pipe

- PVC pipe occupies more than 60% of the plastic pipe on field. It is also widely used in irrigation in China and is often used as main pipes.
- PVC-U pipe is light weight, long service life, cheaper than HDPE, more expensive than LDPE, relatively good tensile and compressive strength, but relatively brittle at low temperature, low temperature resistance and toughness than PE pipe, easy broken when freezing.

Cost less Harvest moze

On field installation for PVC

PVC pipes are hard, rigid, tougher than PE pipes, vulnerable to freezing at low temperatures, not suitable for bare surface, need to be buried in installation, buried depth must be below the local frozen soil depth. In particular, the micro sprinkler system is broken during the freezing season.

By comparison, the PE pipe is less threatened in freezing season, so the micro spraying system adopts LDPE.

PE Pipes

 PE pipe is the second largest consumer in the world, and it is also the most widely used pipe in HEIS in China. PE pipes used in irrigation system are LDPE pipes and HDPE pipes. They are light weight, corrosion resistant, non-toxic, flexible, anti-aging, antiultraviolet radiation relatively, low temperature resistance and toughness than PVC pipes.

PE盘管系列

CPVC PLASTIC PIPE DATA Schedule 40 & 80						
Nominal	CPVC PIPE OD		Schedule	Wall	Weight Per Foot (lbs)	
Pipe Size	inches	mm	No.	Thickness	Pipe	Pipe filled with wate
3/8"	0.675	17.15	40	0.091	0.122	0.205
			80	0.126	0.154	0.215
1/2"	0.840	21.34	40	0.109	0.180	0.312
			80	0.147	0.225	0.326
3/4"	1.050	26.67	40	0.113	0.239	0.469
			80	0.154	0.305	0.491
1"	1.315	33.40	40	0.133	0.352	0.726
			80	0.179	0.449	0.760
1 1/4"	1.660	42.16	40	0.140	0.475	1.122
			80	0.191	0.618	1.173
1 1/2"	1.900	48.26	40	0.145	0.568	1.450
			80	0.200	0.751	1.516
2	2.375	60.33	40	0.154	0.761	2.213
			80	0.218	1.040	2.319
2 1/2"	2.875	73.03	40	0.230	1.201	3.273
			80	0.276	1.584	3.418
3"	3.5	88.90	40	0.216	1.572	4.772
			80	0.300	2.124	4.984
3 1/2"	4	101.60	40	0.226	1.905	6.185
			80	0.318	2.607	6.642
4"	4.5	114.30	40	0.237	2.239	7.749
			80	0.337	3.105	8.085
5"	5.563	141.30	40	0.258	3.062	11.722
			80	0.375	4.343	12.213
6"	6.625	168.28	40	0.280	3.945	16.455
			80	0.432	5.929	17.219
8"	8.625	219.08	40	0.322	5.920	27.520
			80	0.500	9.051	28.851
10"	10.75	273.05	40	0.365	8.406	42.506
			80	0.593	13.429	44.529
12"	12.75	323.85	40	0.406	11.172	59.672
			80	0.687	18.458	52.458
14"	14	355.60	40	0.437	13.262	71.762
			80	0.750	22.224	73.424
16"	16	406.40	40	0.500	17.312	93.812
			80	0.843	28,557	98 257

HDPE Pipe

 HDPE pipe has good toughness, many pressure specifications (Schedule), more expensive than LDPE pipe, but also expensive than PVC-U pipe, can be welded connection, that is irrigation system pipe of choice.

HDPE Pipe

- High technical requirements when installation, technical requirements for installation personnel, strict compliance with the welding process, docking method, cooling time, especially pay attention to the control of welding temperature.
- For installation environment, there must be power supply.
- Under normal conditions, the service life can usually reach 30~50 years.

PE Pipes

• LDPE pipe has good toughness, weatherability and anti-aging ability, the conventional pressure of 0.6 MPa or 0.8 MPa, the price is relatively affordable, usually as lateral of water distribution, or installation with drip irrigation, drip irrigation tape, dripper, drip arrow, micro-spray, sprinkler and other irrigation devices, can also be used as a small system main pipe. Most of them adopt lock type movable jointer.

 PE pipe has flexibility, strong adaptability to uneven settlement of pipe foundation, it can be buried to installed, or dig ditches, can also be installed on the surface on open field, when meet obstacles by changing the way of pipeline.

LDPE usually adopts PP hoop type quick pipe connection.

- What are the PP lock quick fittings?
- What's good about the PP hoop connection?
- Which places can be used?
- Is it worthwhile to use it?

Cost less Harvest može

PP lock hoop quick fittings family

Cost less Harvest može

90°REDUCING TEE тройник редукционный 异径三通

Size/размер

25x20x25 32x20x32 32x25x32 40x20x40 40x25x40 40x32x40 50x20x50 50x25x50 50x32x50 50x40x50 63x20x63 63x25x63 63x32x63 63x40x63 63x50x63 75x50x75 75x63x75 90x50x90 90x63x90 90x75x90 110x63x110 110x75x110 110x90x110

Cost less Harvest more in

irrist

MALE THREADED TEE тройник с наружной резьбой

Size/размер

20x1/2 20x3/4 20x1 25x1/2 25x3/4 25x1 32x1/2 32x3/4 32x1 32x11/4 40x1 40x11/4 40x11/2 50x11/4 50x11/2 50x2 63x11/2 63x2 63x21/2 75x2 75x21/2 90x21/2 90x3 110x3 110x4

FEMALE THREADED TEE

тройник с внутренней резьбой 阴螺纹三通

Size/размер

20x1/2 20x3/4 20x1 25x1/2 25x3/4 25x1 32x1/2 32x3/4 32x1 40x1 40x11/4 40x11/2 50x11/4 50x11/2 50x2 63x11/2 63x2 75x2 75x21/2 90x21/2 90x3 110x3 110x4

Cost less Harvest more irrist

Size/pa3mep

20 25 32 40 50 63 75 90 110

REDUCING COUPLING муфта редукционный 异径直通

Size/размер

25x20, 32x20, 32x25, 40x20, 40x25, 40x32, 50x20, 50x25, 50x32, 50x40, 63x20, 63x25, 63x32, 63x40, 63x50, 75x50, 75x63, 90x63, 90x75, 110x75, 110x90

Cost less Harvest moke

MALE THREADED COUPLING

муфтас наружной резьбой 阳螺纹直通

Size/pasmep

20x1/2 20x3/4 20x1 25x1/2 25x3/4 25x1 32x1/2 32x3/4 32x1 32x11/4 40x1 40x11/4 40x11/2 50x11/4 50x11/2 50x2 63x11/2 63x2 63x21/2 75x2 75x21/2 90x21/2 90x3 110x3 110x4 FEMALE THREADED COUPLING муфта с внутренней резьбой 阴螺纹直通

Size/размер

20x1/2, 20x3/4, 20x1, 25x1/2, 25x3/4, 25x1, 32x1/2, 32x3/4, 32x1, 40x11/4, 40x11/2, 50x11/4, 50x11/2, 50x2, 63x11/4, 63x11/2, 63x2, 75x2, 75x21/2, 90x21/2, 90x3, 110x3, 110x4

Saddle: instead of variable diameter threaded tee, suitable for PVC pipes, PE pipes, PPR pipes and other pipelines, covering 200 specifications, affordable price, no need to cut off the main pipe.

Basic of pipe selection

irrist

Pipe selection - let each pipe appears in the most desirable place.

- PE pipe
- Light weight, good toughness, low temperature resistance, non-toxic, cheap, high impact strength, but low compressive and tensile strength
- HDPE: hot melt welding, flange thread.
- HDPE is often used as main pipe.
- LDPE: quick lock joint.
- LDPE often used as lateral pipe and dripline.

Pipe selection

- PVC-U Pipe
- It has good tensile and compressive strength, but its flexibility is not as good as other plastic pipes, good corrosion resistance, the price is cheaper, but at low temperatures easy broken.
- Connection: Adhesive, looper, flange thread.
- Often be used as main pipe

Pipe selection

- PPR Pipe
- Good corrosion resistance, good strength, high surface hardness, with a certain degree of high temperature resistance.
- Connection: Similar to PE pipe, hot-melt welding, flange, thread.
- Generally use as main pipe.
- Steel Pipe; cross the road, etc. steel pipe as protective bushing; wire / cable: flame retardant as electric pipe for casing.

Diameter selection

• Looking for a balance between investment and irrigation area, consideration of flow and allowable water loss is jointly determined.

Piping pressure-bearing

• Related to working pressure

Piping network accessories

- Accessories
 - Tees, elbows, reduce, joiner
- Control valve
 - Gate valves, butterfly valves, ball valves, solenoid valves, electric valves.
- Protector
 - Safety valve, check valve, pressure reducing valve, air valve
- Regulating device
 - Pressure / flow regulator.
- Measuring instrument
 - Pressure gauge, flowmeter, etc.

Cost less Harvest moze

Piping network accessories

solenoid

Cost less Harvest more

Application of vacuum valve / solenoid valve (field head)

Air valves - Safety Guards for pipe networks

Safety Guards

Water Hammer

- Water hammer occurs when the flow of water in a pipe is abruptly changed or stopped
- When water hammer occurs, a high intensity pressure wave travels back through the piping system until it reaches a "point of relief"
 - valve, sprinkler, elbow, poor glued joint, stressed pipe

Causes of water hammer

- I. Valve closure
- 2. Uncontrolled flow velocity in empty pipes
- 3. Trapped air in long runs of pipe
- 4. Reverse flow when pumps stop

Safety Guards

Avoiding water hammer

- 5 ft/s maximum design
- Thrust blocking
- Air relief valves
- Check valves

Efficiency — Project X Material X Install X Maintain

81% 🗖 95% 95% 95% 95%

- Why consider drip irrigation?
- Drip irrigation can help you use water
- efficiently. A well-designed drip irrigation system
- loses practically no water to runoff, evaporation,
- or deep percolation in silty soils. Drip irrigation
- reduces water contact with crop leaves, stems,
- and fruit. Thus, conditions may be less favorable
- for disease development. Irrigation scheduling
- can be managed precisely to meet crop demands,
- holding the promise of increased yield and
- quality.
- Growers and irrigation professionals often
- refer to "subsurface drip irrigation," or SDI.
- When a drip tape or tube is buried below the soil
- surface, it is less vulnerable to damage due to UV
- radiation, cultivation, or weeding. With SDI,
- water use efficiency is maximized because there
- is even less evaporation or runoff.
- Agricultural chemicals can be applied more
- efficiently through drip irrigation. Since only the
- crop root zone is irrigated, nitrogen already in the
- soil is less subject to leaching losses, and applied fertilizer can be used more efficiently. In the case of insecticides, less product might be needed.
 Make sure the insecticide is labeled for

Basic Knowledge

 Basic knowledge prepared to assist with the correct use of High Efficient Irrigation, Sprinkler or Micro Irrigation, either On-Surface Drip Irrigation (OSDI) or Sub-surface Drip Irrigation (SDI).). Included Hydraulic in Irrigation, technical data.

Pressure Network Hydraulics

- "Network Hydraulics Theory"
 - "The Energy Equation"
- "Hydraulic and Energy Grades"
- "Conservation of Mass and Energy"
 - "The Gradient Algorithm"
- "Derivation of the Gradient Algorithm"
 - "The Linear System Equation Solver"
 - "Pump Theory"
 - "Valve Theory"

Network Miscellaneous

- **Pipes**—Transport water from one location (or node) to another.
- Junctions/Nodes—Specific points, or nodes, in the system at which an event of interest is occurring. This includes points where pipes intersect, where there are major demands on the system such as a large industry, a cluster of houses, or a fire hydrant, or critical points in the system where pressures are important for analysis purposes.
- **Reservoirs and Tanks**—Boundary nodes with a known hydraulic grade that define the initial hydraulic grades for any computational cycle. They form the baseline hydraulic constraints used to determine the condition of all other nodes during system operation. Boundary nodes are elements such as tanks, reservoirs, and pressure sources.

Network Miscellaneous

- Pumps—Represented as nodes. Their purpose is to provide energy to the system and raise the water pressure.
- Valves—Mechanical devices used to stop or control the flow through a pipe, or to control the pressure in the pipe upstream or downstream of the valve. They result in a loss of energy in the system.

Cost less Harvest more

The Energy Principle

In hydraulic applications, energy is often represented as energy per unit weight, resulting in units of length. Using these length equivalents gives engineers a better feel for the resulting behavior of the system. When using these length equivalents, the state of the system is expressed in terms of head. The energy at any point within a hydraulic system is often represented in three parts:

These quantities can be used to express the headloss or head gain between two locations using the energy equation

Pressure Head:		р/ү
Elevation Head		z
Velocity Head:		V ² /2g
Where:	р	=Pressure (N/m ² , lb./ft. ²)
	g	=Specific weight (N/m ³ , lb./ft. ³)
	z	=Elevation (m, ft.)
	V	=Velocity (m/s, ft./sec.)
	g	=Gravitational acceleration constant (m/s ² , ft./sec. ²)

Understanding basic hydraulics

"How can I get rid of these brown spots?" is a question you have probably asked yourself. To find the answers, it will help to understand something about basic irrigation hydraulics — the movement of water through a piping system.

- Hydraulics is defined as the study of fluid behavior, at rest and in motion. Properly designed piping, with sound hydraulics, can greatly reduce maintenance problems over the life of an irrigation system. Controlling the water flow velocity, holding velocity within proper limits, reduces wear on the system components and lengthens service life.
- Poor hydraulic design results in poor performance of the irrigation system, leading to stressed crop growth, or even broken pipes and flood damage.
- Hydraulic analysis is important to minimize financial risks, produce efficient designs and eliminate waste.

 Water exerts pressure – defined as the force of water exerted over a given area. The formula for water pressure looks like this:

• $P = F \div A$

- P= pressure in pounds per square inch (kilograms per square centimeter)
 - F = force in pounds (kilograms)
 - A = area in square inches (square centimeters)

Water Fundamentals: Weight, Pressure, and Volume

- Water....
 - 8.34 lbs/gallon
 - 7.48 g/ft³
 - 62.4 lbs/ft³
 - 1000 kg/m³

Water Fundamentals: Variables and Units

• Cross sectional area of a pipe $A = \pi * r^2$ $A = \pi * d^2/4$

Cost less Harvest može irrist

Basic hydraulics

Water Fundamentals: Weight and Pressure

- Water exerts a force on it's surrounding
- Pressure: psi (lbs/in2), kPa, bars
 - 2.31 ft of water provides 1psi
 - 23.1 ft of water provides 10 psi
 - Ift of water provides 0.433 psi
- Elevation (ft) = pressure (2.31 ft/psi)
 Metric: 1m of water = 9.81 kPa

Water Fundamentals: Weight and Pressure

- Static Pressure
 - Pressure in a system when water is motionless
 - Will vary at different locations in system due to differences in elevation
- Dynamic Pressure
 - "Operating" or "Working" pressure
 - Pressure exiting any point in a system when it is operating
 - DP < SP due to resistance and friction losses

Côst less Harvest može

Basic hydraulics

Water Fundamentals: Flow

- Velocity is the speed of water as it moves through a pipe system. We use "average" velocity (feet per second, fps, ft/s, m/s).
 I ft/s = 0.305 m/s
- Flow (flowrate) is a measure of the amount of water moved during a period of time (gallons per minute, gpm, ft³/s, m³/s).

 $1 ft^{3}/s = 449/gpm$

Water Fundamentals: Flow

 Relationship between velocity, flow, crosssectional area of a pipe:

q = va

Cost less Harvest more irrist

Basic hydraulics

Water Fundamentals: Flow

 Example: Schedule 40 pipe, 2" nominal pipe size (NPS), 3 feet per second. What is the flowrate in gpm?

> q = va q = 3 ft/s * 60 s/min * π * (2/2)²-in² * 1ft²/144in² q = 3 * 60 * 3.14 * 1²*0.00694 q = 3.92 ft³/min q = 3.92 ft³/min * 7.48 gal/ft³ q = 29.3 gpm

Water Fundamentals: Energy

- Energy Head = the amount of energy associated with the combination of elevation, pressure, and velocity
- Neglecting velocity head (small contribution):
 H (energy head) = p (pressure) + E (elevation)
 H(ft) = p (psi) * 2.31 ft/(1 lb/sq.in.) + E (ft)

Consider a 1 in² (1 cm²) container filled with water to a depth of 1 ft (50 cm). One foot (50 cm) of water creates a pressure of .433 psi (0.05 bar) at the base of the container. It makes no difference if the 1 ft (50 cm) of water is held in this narrow container or at the bottom of a 1 ft (50 cm) deep lake. The area is concerned with only 1 in² (1 cm²) at the bottom of either container.

Figure 1: Water towers filled at 12 in and 24 in (50 cm and 100 cm)

 The word hydrostatic refers to the properties of water at rest. We will be discussing static water pressure as a starting point for hydraulic design of an irrigation system.

 Static water pressure refers to the pressure of a closed system with no water moving. A water-filled main line, with all valves closed, would experience full static pressure with only pressure variation due to elevation. Static water pressure is an indication of the potential pressure available to operate a system.

What's the effect of 1 psi loss per 100 feet?

 Hydrodynamic refers to the properties of water in motion.
 Moving water, at the correct flow and pressure, to where it's needed is the hydraulic basis of irrigation design.

Hydraulic and Energy Grades

Hydraulic Grade

• The hydraulic grade is the sum of the pressure head (p/g) and elevation head (z). The hydraulic head represents the height to which a water column would rise in a piezometer. The plot of the hydraulic grade in a profile is often referred to as the hydraulic grade line, or HGL.

Energy Grade

 The energy grade is the sum of the hydraulic grade and the velocity head (V²/2g). This is the height to which a column of water would rise in a pitot tube. The plot of the hydraulic grade in a profile is often referred to as the energy grade line, or EGL. At a lake or reservoir, where the velocity is essentially zero, the EGL is equal to the HGL, as can be seen in the following figure.

Cost less Harvest more irrist

Basic hydraulics

Water Fundamentals: Friction Loss

- Water flowing in pipes looses energy
- Any change in flow, restriction, causes of additional turbulence, etc., will result in a decrease in energy
- Factors affecting friction loss
 - velocity
 - pipe diameter
 - pipe roughness (type)
 - length

Water Fundamentals: Friction Loss

- Velocity Affects
 - Maximum?
 - Minimum?
- Recommended ranges of velocities in plastic pipe?
- Costs?
 - I in. diameter PVC

Schedule 40 (450 psi)	\$7.00/20 ft
Thin wall (315 psi)	\$3.60 /20 ft
~ 49 % reduction in cost	

6. Frictional Head Loss Chart

Size		13mm (1/2")		19mm (3/4") 25mm		a (1") 32mm (1 1/4")		38mm (1 1/2")		50mm (2")		63mm (2 1/2")		75mm (3*)				
ID (cm)		1.3	1.326		2.093		2.664		3,505		4,089		5.250		6.271		7.793	
Flow GPM	Flow	Velocity m/s	Head loss m/100m	Velocity m/s	Head loss m/100m	Velocity m/s	Head loss m/100m	Velocity m/s	Head loss m/100m	Velocity m/s	Head loss m/100m	Velocity m/s	Head loss m/100m	Velocity m/s	Head loss m/100m	Velocity m/s	Head loss m/100m	
1	0.06	D.32	1,05	0,18	0.16	0.11	0.09	0.06	0.02	0.05	0.00	0.03	0,00	1-00/214	1.000	22018	Cite Cole	
22	0.13	0,64	3.77	0.37	0.96	0.23	0.30	0.13	0.09	0.09	0.04	0.06	0.02					
3	0.19	0.96	7,99	0.55	2.04	0.34	0,62	0.20	0.17	0.14	0.09	8.09	0.02	0.05	0.00			
- 4	0.25	1.28	13.61	0.73	3.47	0.45	1,07	0.26	0.28	0.19	0.13	0.12	0.04	0,08	0.02			
5	0.32	1.61	20.57	0.92	5.23	0.56	1.63	0.32	0.43	0,24	0.19	0.14	0.06	0.10	0.02	0,05	0.00	
6	0.38	1.93	28,85	1,10	7.35	0.68	2.27	0.39	0.60	0.29	0.28	0,17	0.09	0.12	0.04	0:08	0,02	
7	0.44	2.25	38.38	1,28	9.77	0.79	3.02	0.46	0.79	0.33	0.39	0.20	0,11	0,14	0.04	0.09	0.02	
	0.50		-	1,47	12,52	0.90	3,86	0.52	1.01	0.38	0,47	0.23	0.15	0.16	0.05	0,10	0.02	
-	0.57			1.65	15.56	1.01	4.90	0.59	1.26	0.43	0.68	0.26	0.17	0.18	0.05	0.12	0,02	
10	0.63			1,03	18.90	1.13	5.85	0.65	1.54	0.48	0,73	0.29	0.21	0.20	0.09	0.13	0.02	
11	0.69			2,02	22,57	1.24	6.96	0.72	1.84	0.52	0,86	0.32	0,26	0.22	0.11	0.14	0.04	
12	0.76			2.20	26.51	1.35	8.19	0.78	2.16	0.57	1.03	0.35	0.30	0.24	0.13	0.16	0,04	
14	0.88			2,56	35.27	1.58	18.89	0.91	2.87	0.67	1.35	0.41	0.41	0.28	0.17	0.18	0.06	
16	1.01			2,93	45.15	1,81	13,95	1.04	3.66	1.77	1.74	0.46	0.51	0.33	0.21	0,21	0.09	
18	1.14			3.30	56.17	2.03	17.36	1.17	4.56	0.86	2.16	0.52	0.64	0.37	0.28	0.24	0,89	
20	1.26			3,66	68.28	2.26	21.09	1.30	5.85	0,96	2.61	0.58	0.77	0.41	0.32	0.26	0.11	
22	1.39			4.03	81.46	2.49	25.16	1.43	6.62	1.06	3.13	0.64	0.92	0.45	0.39	0.29	0,13	
24	1.51			4.40	95.69	2.72	29.55	1.57	7.78	1.15	3.69	0.70	1.09	0.48	0.45	0.32	0,15	
26	1.64			4.76	101.8	2.94	34.29	1.70	9.02	1.25	4.26	0.76	1.26	0.53	0,54	0.34	0.19	
28	1.77			5,13	127.3	3.17	39.32	1.83	10.35	1.34	4.89	0.81	1.46	0.57	0.62	0.37	0.21	
30	1.89			5.50	144.7	3.40	44.68	1.96	11,77	1.44	5.55	0.87	1.65	0.61	0.69	0.40	0.24	
35	2.21			Contraste -	1 Construction	3.95	59.45	2.28	15.67	1.68	7.39	1.02	2,19	17.0	0.92	0,46	0.32	
40	2.52					4,52	36.14	2.61	20.06	1.92	9.47	1.16	2,81	0.81	1,18	0.53	0.41	
45	2.84					5.08	94.70	2.94	24.73	2,16	11.79	1.31	3.49	0.92	1.48	0.59	0,51	
50	3.15					5.64	115.1	3.26	30.30	2,40	14.32	1.45	4.24	1,02	1,78	0.66	0.62	
Polyeth	ylene (F	E) SDR-	Pressure	Rated	Tube (2	306, 32	06, 3306) SDR	7. 9, 11.	5, 15 C=	150]		0.000	_				

- Drip irrigation system with a prefilter, pump station with backflow prevention, and chemical injection.
- A pressure control valve is recommended to adjust the water pressure as desired before it enters the drip lines.
- A water meter can be placed after the pressure control or between a solenoid valve and each zone.
- An air vent provides vacuum relief. Vacuum relief is necessary between the solenoid valve and the drip tapes to avoid suction of soil into the emitters when the system is shut off

Head Loss in Piping System

Experimental method of measuring coefficients of losses:

3: Calculation of singular (minor) head loss coefficient :

Singular (minor) head loss = total loss - regular(major) head loss = Example: = 0.0002bars 0.003bars-bar = 0.0028 0.0028 = 280 000 p Section m2 = (Diameter m / 2) 2 x 3.1416 = Ex (0.1 / 2) 2x 3.14 = 0.0025x3.14 = 0.00785m 2 Qvm3_sec = flow m3_h/3600 = Ex: 10 m3h / 3600 = 0.002777 m3_sec fluid velocity m_sec =Qv (volumetric flow m3_sec) / Section_m 2 = Ex: 0.002777/0.00785 = 0.35 m / sec Dynamic pressure (Pa) = 0.5 x density x kgm3 (fluid speedm_sec) ² = Ex: with water = 0.5 x 1000 x 0.35 ² = 61.25 pascals

Coefficient of singular pressure loss = Loss singular (pascals) / dynamic pressure (Pa) = Ex: 61.25/ 280 = 0.218

Dynamic water pressure

 Dynamic water pressure or "working pressure" differs from static pressure because it varies throughout the system due to friction losses, as well as elevation gains or losses.

Figure 5: Water path with friction

Water Head Loss Models

Major Loss

6. Frictional Head Loss Chart

Size		13mm (1/2") 1.326		19mm (3/4") 2.093		25m	25mm (1") 3		32mm (1 1/4")		38mm (1 1/2")		50mm (2")		63mm (2 1/2")		75mm (3*)	
ID (cm)						2.664		3,505		4,089		5.250		6.271		7.793		
Flow GPM	Flow	Velocity m/s	Head loss m/100m	Velocity m/s	Head loss m/100m	Velocity m/s	Head loss m/100m	Velocity m/s	Head loss m/100m	Velocity m/s	Head loss m/100m	Velocity m/s	Head loss m/100m	Velocity m/s	Head loss m/100m	Velocity m/s	Head los m/100m	
1	0.06	0.32	1,05	0.18	0.26	0.11	0.09	0.06	0.02	0.05	0.00	0.03	0.00			22011	Citree///e	
22	0.13	0,64	3.77	0.37	0.96	0.23	0.30	0.13	0.09	0.09	0.04	0.06	0.02					
3	0.19	0.96	7,99	0.55	2,04	0.34	0,62	0.20	0.17	0.14	0.09	8.09	0.02	0.05	0.00			
- 4	0.25	1,28	13.61	0.73	3.47	0.45	1,07	0.26	0.28	0.19	0.13	0.12	0.04	0,08	0.02			
5	0.32	1.61	20.57	0.92	5.23	0.56	1.63	0.32	0.43	0,24	0.19	0.14	0.06	0.10	0.02	0.06	0.00	
6	0.38	1.93	28.85	1,10	7.35	0.68	2.27	0.39	0.60	0.29	0.28	0.17	0.09	0.12	0.04	0.08	0,02	
.7	0.44	2.25	38,38	1,28	9.77	0.79	3.02	0.46	0179	0.33	0.39	0.20	0.11	0,14	0.04	0.09	0.02	
8	0.50	2.57	49.14	1.47	12,52	0.90	3.86	0.52	1.01	0,38	0,47	0.23	0.15	0.16	0.05	0,10	0.02	
1.000	0.57	2.89	61.23	1.65	15.56	1.01	4.90	0.59	1.26	0.43	0.68	0.26	0.17	0.18	0.05	0.12	0,02	
10	0,63	3,21	74.30	1,03	18.90	1.13	5.85	0.65	1.54	0.40	0,73	0.29	0.21	0.20	0.09	0.13	0.02	
11	0.69	3,54	88.64	2.02	22,57	1.24	6.96	0.72	1.64	8.52	0.86	0.32	0,26	0.22	0.11	0.14	0.04	
012	0.76	3.86	104.2	2.20	26.51	1.35	8.19	0.78	2.16	0.57	1.03	0.35	0.30	0.24	0,13	0.16	0,04	
14	0.88	4,50	138.5	2.56	35.27	1.58	18.89	0.91	2.87	8.67	1.35	0.41	0.41	0.28	0,17	0.18	0.06	
16	1.01	5,14	177,4	2.93	45.15	1.81	13,95	1.04	3.66	8.77	1.74	0.46	0.51	0.33	0.21	0,21	0.09	
18	1.14	5.79	220.7	3:30	\$6.17	2.03	17.36	1.17	4.56	0.86	2.16	0.52	0.64	0.37	0.28	0.24	0,89	
20	1.26			3.66	68.28	2.26	21.09	1.30	5.85	0.96	2.61	0.58	0.77	0.41	0.32	0.26	0.11	
22	1.39			4103	81.46	2.49	25.16	1.43	6.62	1.06	3.13	0.64	0.92	0.45	0.39	0.29	0,13	
24	1.51			4.40	95.69	2.72	29.55	1.57	7.78	1.15	3.69	0.70	1.09	0.48	0.45	0.32	0,15	
26	1.64			4.76	101.8	2.94	34.29	1.70	9.02	1.25	4.26	0.76	1.26	0.53	0.54	0.34	0.19	
28	1,77			5,13	127.3	3.17	39.32	1.83	10.35	1.34	4,89	0.81	1.46	0.57	0.62	0.37	0.21	
30	1.89			5,50	144.7	3.40	44.68	1.96	11.77	1.44	5.55	0.87	1.65	0,61	0.69	0.40	0.24	
35	2.21			Contraction of	Constant.	3.95	59.45	2.28	15.67	1.68	7.39	1.02	2,19	0.71	0.92	0,45	0.32	
40	2.52					4.52	76.14	2.61	20.06	1.92	9.47	1.16	2,81	0.81	1.18	0.53	0.41	
45	2.84					5.08	94.70	2.94	24.73	2.16	11.79	1.31	3.49	0.92	1.48	0.59	0.51	
50	3.15					5.64	115.1	3.26	30, 30	2.40	14.32	1.45	1.24	1.02	1.78	0.66	0.62	

Polyethylene (PE) SDR-Pressure Rated Tube [(2306, 3206, 3306) SDR 7, 9, 11.5, 15 C=150]

m^{3/}h 1000

RESISTANCE COEFFICIENTS FOR VALVES AND FITTINGS

Darcy-Weisbach

Darcy Weisbach Friction Coefficient Equation

Hazen-Williams

Hazen-Williams Loss Equation

Empirical frictional head loss calculation

$$H_{L} [m] = \frac{10.472}{C^{1.852}} \cdot \frac{Q^{1.852}}{d^{4.871}} \times L$$

Q = flow rate $[m^3s^{-1}]$ L = length of pipe [m]

d = diameter of pipe [m]

C = roughness coefficient (PVC = 150, steel = 100)

Hazen-Williams Factors

Pipe material / D (mm)	75	150	300	600	1200
Uncoated cast iron	121	125	130	132	134
Coated cast iron	129	133	138	140	141
Uncoated steel	142	145	147	150	150
Coated steel	137	142	145	148	148
Galvanised iron	129	133	-	-	-
Uncoated asbestos cement	142	145	147	150	-
Coated asbestos cement	147	149	150	152	-
Concrete, min. values	69	79	84	90	95
Concrete, max. values	129	133	138	140	141
Prestressed concrete	-	-	147	150	150
PVC, brass, cooper, lead	147	149	(150)	152	153
Wavy PVC	142	145	147	150	150
Bitumen/cement lined	147	149	150	152	153

Source: Bhave, 1991

Advanced Materials and Sustainable Energy Lab

www.umb.no

HW Online Calculation

http://m.guangaidashi.com/col.jsp?id=114&_sc

Chezy-Mannings

Manning

73

TABLE 3.3 Manning's Roughness Coefficient, n, for Pipe Flows

	Manning's n				
Type of Pipe	Min.	Max.			
Glass, brass, or copper	0.009	0.013			
Smooth cement surface	0.010	0.013			
Wood-stave	0.010	0.013			
Vitrified sewer pipe	0.010	0.017			
Cast-iron	0.011	0.015			
Concrete, precast	0.011	0.015			
Cement mortar surfaces	0.011	0.015			
Common-clay drainage tile	0.011	0.017			
Wrought iron	0.012	0.017			
Brick with cement mortar	0.012	0.017			
Riveted-steel	0.017	0.020			
Cement rubble surfaces	0.017	0.030			
Corrugated metal storm drain	0.020	0.024			

$V = \frac{1}{n} R_h^{2/3} S^{1/2}$	$R_h \rightarrow \text{hydraulic Radius} = \frac{\text{wetted A}}{\text{wetted P}} = \frac{D}{4}$ $S = \frac{h_f}{L}$ $n \rightarrow \text{Manning Coefficient}$)
$h_f = \frac{10.3 L (nQ)^2}{D^{5.33}}$	SI Units	

Cost less Harvest more

irrist

Irrigation System Layout

Water Flow in Pipe

Later Pipe Head Loss

Head loss in drip lateral pipe

4 A modified Hazen-Williams head loss equation:

$$H_L = 2.78 \otimes 10^{-6} \otimes F \otimes \frac{L}{D^{4.87}} \otimes (\frac{N \otimes q}{C})^{1.85}$$

 H_L = head loss along a lateral drip line

- = lateral length (m)
- = internal diameter (m) D

- = number of emitters Ν
- = average emitter flow rate (m³/h) q
- С = Hazen-Williams coefficient (130 - 120 for polyethylene pipe with ID < 16 mm)
- = 0.37 for more than 20 emitters F

Lateral Hydraulics

 \sim

Online Hydraulics

- http://hawsedc.com/engcalcs/Manning-Pipe-Flow.php
- <u>http://www.pressure-drop.com/Online-Calculator/</u>

Flow medium

Flow medium:	Water 20 °C						
Condition:		aseous	Addtional data for gases: Pressure (inlet, abs.):				
				bar			
Volume flow: 🗸		m³/h 🗸	Temperatur	e (inlet):			
Weight density:	998.206	kg/m³ 🗸		°C ~			
Dynamic Viscosity:	√ 1001.61	10-6 kg/ms 🗸	Temperature	e (outlet):			
				°C ~			

Pipeline systems Pipe networks

Water Distribution System Assumption

$$\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2 + h_L$$

- Each point in the system can only have one <u>pressure</u>
- The pressure change from 1 to 2 by path *a* must equal the pressure change from 1 to 2 by path *b*

Water Distribution System Assumption

(Need a sign convention)

- Pipe diameters are constant
- Model withdrawals as occurring at nodes so V is constant

Networks of Pipes

- Mass conservation at all nodes
- The relationship between head loss and discharge must be maintained for each pipe
 - Darcy-Weisbach equation
 - Swamee-Jain
 - Exponential friction formula Hazen-Williams

Cost less Harvest more

Water Resource

Pump Theory

Cost less Harvest moke

As the moving pump part (impeller, vane, piston diaphragm, etc.) begins to move, water is pushed out of the way. The movement of water creates a partial vacuum (low pressure) which can be filled up by more water.

Pump Theory

- Pumps are an integral part of many pressure systems. Pumps add energy, or head gains, to the flow to counteract headlosses and hydraulic grade differences within the system.
- A pump is defined by its characteristic curve, which relates the pump head, or the head added to the system, to the flow rate. This curve is indicative of the ability of the pump to add head at different flow rates. To model behavior of the pump system, additional information is needed to ascertain the actual point at which the pump will be operating.

• The system operating point is based on the point at which the pump curve crosses the system curve representing the static lift and headlosses due to friction and minor losses. When these curves are superimposed, the operating point can easily be found. This is shown in the figure below.

Pump Power Calculator

- The ideal hydraulic power to drive a pump depends on
- the mass flow rate the
- liquid density
- the differential height

the second s

Cost less Harvest more

Either it is the static lift from one height to an other or the total head loss component of the system - and can be calculated like

> $P_{h(kW)} = q \rho g h / (3.6 \ 10^6)$ (1) where

 $P_{h(kW)} = hydraulic power (kW)$ $q = flow capacity (m^3/h)$ $\rho = density of fluid (kg/m^3)$ $g = gravity (9.81 m/s^2)$ h = differential head (m)

The hydraulic Horse Power can be calculated as: $P_{h(hp)} = P_{h(kW)} / 0.746$ (2) where

 $P_{h(hp)} = hydraulic horsepower (hp)$

Example - Power pumping Water

- 1 m³/h of water is pumped a head of 10 m. The theoretical pump power can be calculated as
- $P_{h(kW)} = (1 \text{ m}^3/h) (1000 \text{ kg/m}^3) (9.81 \text{ m/s}^2) (10 \text{ m}) / (3.6 10^6)$
- = <u>0.027</u> kW

Shaft Pump Power

The shaft power - the power required transferred from the motor to the shaft of the pump depends on the efficiency of the pump and can be calculated as $P_{s(kW)} = P_{h(kW)} / \eta$ (3)

where $P_{s(kW)} = shaft power (kW)$

 η = pump efficiency

Variable Speed Pumps

 A pump's characteristic curve is fixed for a given motor speed and impeller diameter, but can be determined for any speed and any diameter by applying the affinity laws.

Online Pump Calculator - SI-units

- Online Pump Calculator SI-units
- https://www.engineeringtoolbox.com/pumps-power-d_505.html

Thank You!

